Side Stream Nutrient Considerations and Nutrient Harvesting

Eric Spargimino, PE
CDM Smith

October 23, 2014

CDM Smith

Agenda

- High Strength Side Streams
- Drivers
 - Permit, Cost to treat,O&M and equipment
- Nitrogen Treatment Alternatives
- Phosphorus Treatment
 Alternatives
 - Treat or Harvest
- Summary and Conclusions

Side Stream Characterization

	Primary Sludge Thickening Return	Secondary Sludge Thickening Return	Dewatering Return	Digestate Return
TSS - Conc., mg/L	557	444	330	2000
BOD - Conc., mg/L	300	300	200	50
Ammonia - Conc., mg NH3-N/L	15	15	500	1000
Total Phosphorus - Conc., mg TP/L			13	200

Predict BOD and Ammonia from typical wastewater (MOP8) and CDM Smith Clients

Nitrogen Side Stream Treatment Options

- Non-proprietary
 - Equalization
 - High Rate Nitrifying Activated Sludge Process
- Proprietary
 - InNitri[®] ("Inexpensive Nitrification")
 - SHARON® ("Single Reactor High Activity Ammonia Removal Over Nitrite")
 Process
 - AOx-DN ("Ammonia Oxidation-Denitrification Over Nitrite") similar to SHARON®
 - Anammox[®] ("Anaerobic Ammonium Oxidation") Process
 - DEMON (suspended growth)
 - ANITA Mox (fixed film)
 - Other Nitrogen Removal Processes
 - AT-3 ("Aeration Tank 3", NYCDEP 26th Ward)
 - BABE® ("Bio-Augmentation Batch Enhanced")
 - CaRRB ("Centrate and RAS Reaeration Basin")

Nitrification

CDM Smith

$$NH_4^+ + 1.5O_2 \rightarrow NO_2^- + 2H^+ + H_2O$$

 $NO_2^- + \frac{1}{2}O_2 \rightarrow NO_3^-$

Side Stream Process Alternatives

Side Stream Process	Description
Equalization	EQ flow over 24 hr period, or only at night; need mixing
Aerated Equalization	Aerate the centrate only; At 1 day SRT, should get most ammonia removed
High rate nitrifying activated sludge	Activated sludge plant for dewatering Side Stream (aeration tank and clarifier); Can be done in an SBR
InNitri® (m²t technologies)	Treats Side Stream in a separate activated sludge system (with clarifier), produces an enriched population of nitrifying bacteria, which is used to seed the mainstream reactor, no denite step

Side Stream Process Alternatives

	iide Stream Process	Description	Advantages	Disadvantages
E	Equalization	EQ flow over 24 hr period, or only at night; need mixing	Easy, low cost solutionDistributes load throughout day	Load still treated in main processLarge storage tank needed
	Aerated Equalization	Aerate the centrate only; At 1 day SRT, should get most ammonia removed	• Thousand Oaks example – achieve 50% ammonia removal	 More equipment and operational costs than EQ only No denite of Side Stream
	High rate nitrifying activated sludge	Activated sludge plant for dewatering Side Stream (aeration tank and clarifier); Can be done in an SBR	 Non-proprietary Uses high temp of dewatering Side Stream Dallas example - ~800 mg/L ammonia down to <10 mg/L with 3 day SRT; saved \$400K & double equipment cost compared with SHARON® 	 Separate Side Stream process No denite of Side Stream
	nNitri® (m²t echnologies)	Treats Side Stream in a separate activated sludge system (with clarifier), produces an enriched population of nitrifying bacteria, which is used to seed the mainstream reactor, no denite step	 Increased capacity of mainstream nitrification process Uses high temp of dewatering Side Stream to speed reaction 	 No denite of Side Stream Alkalinity needed Poor settling of Side Stream → hard to maintain SRT

Side Stream Process Alternatives – SHARON®/ Annamox®

Side Stream Process	Description
SHARON® (m²t technologies)	Nitrifies ammonia to nitrite then reduces the nitrite to nitrogen gas in a continuous-flow, completely mixed reactor without sludge recycle at the temperature of centrate
AOx-DN (f.r.mahony &associates, inc.)	Similar to SHARON® in fixed film reactor; controls nitrification by intermittently aerating the reactor; at high temp of centrate
DEMON (World Water Works)	In Anammox, nitrite and ammonia are converted to nitrogen gas. Batch operation, suspended growth, two reactors (Min.), one flow EQ tank
ANITA Mox (Kruger, Inc.)	Anammox in continuous flow reactor, Fixed Film Growth (MBBR) or combined Fixed Film and Suspended Growth (IFAS)
SHARON®/ Anammox (m²t technologies)	Anammox downstream of SHARON®, with SHARON® operated to provide approximately equal parts of ammonia and nitrite

Side Stream Process Alternatives – SHARON®/ Annamox®

Side Stream Process	Description	Advantages	Disadvantages
SHARON® (m²t technologies)	Nitrifies ammonia to nitrite then reduces the nitrite to nitrogen gas in a continuous-flow, completely mixed reactor without sludge recycle at the temperature of centrate	 Decrease nitrogen load to mainstream Decrease oxygen & carbon 	 Additional process to maintain Proprietary, can be costly
AOx-DN (f.r.mahony &associates, inc.)	Similar to SHARON® in fixed film reactor; controls nitrification by intermittently aerating the reactor; at high temp of centrate	 Decrease nitrogen load to mainstream Decrease oxygen & carbon 	 Additional process to maintain Proprietary, can be costly
DEMON (World Water Works)	In Anammox, nitrite and ammonia are converted to nitrogen gas. Batch operation, suspended growth, two reactors (Min.), one flow EQ tank	 Decrease nitrogen load to mainstream Decrease oxygen & carbon 	Proprietary, can be costly
ANITA Mox (Kruger, Inc.)	Anammox in continuous flow reactor, Fixed Film Growth (MBBR) or combined Fixed Film and Suspended Growth (IFAS)	Decrease nitrogen load to mainstreamDecrease oxygen & carbon	• Proprietary, can be costly
SHARON®/ Anammox (m²t technologies)	Anammox downstream of SHARON®, with SHARON® operated to provide approximately equal parts of ammonia and nitrite	 Decreases oxygen use by ~63% compared to conventional nitrification Does not consume COD 	 Additional process to maintain Heat generated by Anammox, may need cooling

Biological Nitrogen Removal

SHARON® Process Short-cuts Nitrification to Reduce Energy and Carbon Requirements

Anammox® Process Achieves Shortest Route to Remove Nitrogen at Low Operating Cost (low oxygen, no carbon)

Side Stream Process Flow Schematics

Side Stream Process Alternatives - Other

Side Stream Process	Description
AT-3 ("Aeration Tank 3", NYCDEP – 26th Ward)	Treats Side Stream in a separate activated sludge system, plug flow
BABE ("Bio- Augmentation Batch Enhanced")	Divert portion mainstream RAS and blend with Side Stream to feed into reactor, usually SBR
CaRRB ("Centrate and RAS Reaeration Basin")	Side Stream (centrate) and RAS in bioreactor with aeration for nitrification before return to mainstream

Side Stream Process Alternatives - Other

Side Stream Process	Description	Advantages	Disadvantages
AT-3 ("Aeration Tank 3", NYCDEP – 26th Ward)	Treats Side Stream in a separate activated sludge system, plug flow	• Increased capacity of mainstream nitrification process	Limited full-scale installationsNo denite of Side Stream
BABE ("Bio- Augmentation Batch Enhanced")	Divert portion mainstream RAS and blend with Side Stream to feed into reactor, usually SBR	 Settles better than InNitri® because of RAS addition Can achieve some denite with SBR 	Limited full-scale installationsAdditional process to maintain
CaRRB ("Centrate and RAS Reaeration Basin")	Side Stream (centrate) and RAS in bioreactor with aeration for nitrification before return to mainstream	 Reduced load to mainstream process Can provide biomass storage for wet weather 	Additional process to maintain
Ostara PEARL TM Nutrient Recycling	Controlled struvite precipitation for phosphorus & ammonia removal	• Produces struvite, a product that can be sold	P benefit, not much N benefitCostly

Faces of Struvite

Faces of Struvite

Drivers for Harvesting Phosphorus

- Struvite Chemical and Cleaning Costs Increasing
 - \$170,000/yr and growing at Des Moines
 - \$750,000/yr and growing at Deer Island (Ferric only)
- Potential Effluent Nutrient
- Potential Restrictions on Land Applied P at Des Moines

Phosphorus Side Stream Treatment Options

- Non-proprietary
 - Biological
 - Chemical
 - iron salts
 - Alum
 - pH adjustment
 - Carbon Dioxide Injection
- Proprietary
 - Chemical Addition
 - Struvout 2520
 - Harvest
 - DHV Crystalactor
 - Paques Phosphaq
 - CNP Airprex
 - Multiform Harvest
 - Ostara PEARLTM

Proposed Solution Side Stream Nutrient Removal

Proposed Solution Side Stream Nutrient Removal

revitalizing resources

from Waste

$Mg^{2+} + NH_4^{++} + PO_4^{3-} + 6 H_2O \rightarrow MgNH_4PO_4 \cdot 6H_2O$ struvite $3Fe^{2+} + 2 PO_4^{3-} \rightarrow Fe_3(PO_4)_2 8 H_2O$ vivianite

CDM Smith

DHV - Crystalactor

PHOSPAQ Struvite Product

- Reduce Polymer by up to 30%
- Reduce Disposal Costs by up to 20%
- Reduce Phosphorus Recycle Load by up to 90%
- Reduce Maintenance Costs by up to 50%
- Increase Revenue up to 10% from Fertilizer

Multiform Harvest

Crystal Green® Fertilizer

(Photo removed to reduce file size.)

WASSTRIP_{TM} recommended to protect digester

Struvite Prevention Electrical Cell Lysis to Aid Struvite Harvesting

CDM Smith

Summary

- Compared several nitrogen and phosphorus side stream treatment alternatives
- Evaluated several struvite recovery technologies spanning perceived range from low- to high-tech
- Proposed further study with non Bio-P plants and implications of Iron Salt addition.

Questions

Contact Information:

SpargiminoEM@cdmsmith.com

