Side Stream Nutrient Considerations and Nutrient Harvesting Eric Spargimino, PE CDM Smith October 23, 2014 **CDM Smith** #### Agenda - High Strength Side Streams - Drivers - Permit, Cost to treat,O&M and equipment - Nitrogen Treatment Alternatives - Phosphorus Treatment Alternatives - Treat or Harvest - Summary and Conclusions #### Side Stream Characterization | | Primary
Sludge
Thickening
Return | Secondary
Sludge
Thickening
Return | Dewatering
Return | Digestate
Return | |-----------------------------------|---|---|----------------------|---------------------| | TSS
- Conc., mg/L | 557 | 444 | 330 | 2000 | | BOD
- Conc., mg/L | 300 | 300 | 200 | 50 | | Ammonia
- Conc., mg
NH3-N/L | 15 | 15 | 500 | 1000 | | Total Phosphorus - Conc., mg TP/L | | | 13 | 200 | Predict BOD and Ammonia from typical wastewater (MOP8) and CDM Smith Clients #### Nitrogen Side Stream Treatment Options - Non-proprietary - Equalization - High Rate Nitrifying Activated Sludge Process - Proprietary - InNitri[®] ("Inexpensive Nitrification") - SHARON® ("Single Reactor High Activity Ammonia Removal Over Nitrite") Process - AOx-DN ("Ammonia Oxidation-Denitrification Over Nitrite") similar to SHARON® - Anammox[®] ("Anaerobic Ammonium Oxidation") Process - DEMON (suspended growth) - ANITA Mox (fixed film) - Other Nitrogen Removal Processes - AT-3 ("Aeration Tank 3", NYCDEP 26th Ward) - BABE® ("Bio-Augmentation Batch Enhanced") - CaRRB ("Centrate and RAS Reaeration Basin") #### **Nitrification** CDM Smith $$NH_4^+ + 1.5O_2 \rightarrow NO_2^- + 2H^+ + H_2O$$ $NO_2^- + \frac{1}{2}O_2 \rightarrow NO_3^-$ #### Side Stream Process Alternatives | Side Stream Process | Description | |---------------------------------------|---| | Equalization | EQ flow over 24 hr period, or only at night; need mixing | | Aerated Equalization | Aerate the centrate only; At 1 day SRT, should get most ammonia removed | | High rate nitrifying activated sludge | Activated sludge plant for dewatering Side Stream (aeration tank and clarifier); Can be done in an SBR | | InNitri® (m²t technologies) | Treats Side Stream in a separate activated sludge system (with clarifier), produces an enriched population of nitrifying bacteria, which is used to seed the mainstream reactor, no denite step | #### Side Stream Process Alternatives | | iide Stream
Process | Description | Advantages | Disadvantages | |---|---------------------------------------|---|--|--| | E | Equalization | EQ flow over 24 hr period, or only at night; need mixing | Easy, low cost solutionDistributes load throughout day | Load still treated in main
processLarge storage tank needed | | | Aerated
Equalization | Aerate the centrate only; At 1 day SRT, should get most ammonia removed | • Thousand Oaks example – achieve 50% ammonia removal | More equipment and operational costs than EQ only No denite of Side Stream | | | High rate nitrifying activated sludge | Activated sludge plant for dewatering Side Stream (aeration tank and clarifier); Can be done in an SBR | Non-proprietary Uses high temp of dewatering Side Stream Dallas example - ~800 mg/L ammonia down to <10 mg/L with 3 day SRT; saved \$400K & double equipment cost compared with SHARON® | Separate Side Stream process No denite of Side Stream | | | nNitri® (m²t
echnologies) | Treats Side Stream in a separate activated sludge system (with clarifier), produces an enriched population of nitrifying bacteria, which is used to seed the mainstream reactor, no denite step | Increased capacity of mainstream
nitrification process Uses high temp of dewatering Side
Stream to speed reaction | No denite of Side Stream Alkalinity needed Poor settling of Side Stream → hard to maintain SRT | # Side Stream Process Alternatives – SHARON®/ Annamox® | Side Stream Process | Description | |---------------------------------------|--| | SHARON® (m²t technologies) | Nitrifies ammonia to nitrite then reduces the nitrite to nitrogen gas in a continuous-flow, completely mixed reactor without sludge recycle at the temperature of centrate | | AOx-DN (f.r.mahony &associates, inc.) | Similar to SHARON® in fixed film reactor; controls nitrification by intermittently aerating the reactor; at high temp of centrate | | DEMON (World Water Works) | In Anammox, nitrite and ammonia are converted to nitrogen gas. Batch operation, suspended growth, two reactors (Min.), one flow EQ tank | | ANITA Mox (Kruger, Inc.) | Anammox in continuous flow reactor, Fixed Film Growth (MBBR) or combined Fixed Film and Suspended Growth (IFAS) | | SHARON®/ Anammox (m²t technologies) | Anammox downstream of SHARON®, with SHARON® operated to provide approximately equal parts of ammonia and nitrite | # Side Stream Process Alternatives – SHARON®/ Annamox® | Side Stream Process | Description | Advantages | Disadvantages | |---------------------------------------|--|---|---| | SHARON® (m²t technologies) | Nitrifies ammonia to nitrite then reduces the nitrite to nitrogen gas in a continuous-flow, completely mixed reactor without sludge recycle at the temperature of centrate | Decrease nitrogen load to
mainstream Decrease oxygen & carbon | Additional process to
maintain Proprietary, can be costly | | AOx-DN (f.r.mahony &associates, inc.) | Similar to SHARON® in fixed film reactor; controls nitrification by intermittently aerating the reactor; at high temp of centrate | Decrease nitrogen load to
mainstream Decrease oxygen & carbon | Additional process to
maintain Proprietary, can be costly | | DEMON (World
Water Works) | In Anammox, nitrite and ammonia are converted to nitrogen gas. Batch operation, suspended growth, two reactors (Min.), one flow EQ tank | Decrease nitrogen load to
mainstream Decrease oxygen & carbon | Proprietary, can be costly | | ANITA Mox (Kruger, Inc.) | Anammox in continuous flow reactor,
Fixed Film Growth (MBBR) or combined
Fixed Film and Suspended Growth (IFAS) | Decrease nitrogen load to
mainstreamDecrease oxygen & carbon | • Proprietary, can be costly | | SHARON®/ Anammox (m²t technologies) | Anammox downstream of SHARON®, with SHARON® operated to provide approximately equal parts of ammonia and nitrite | Decreases oxygen use by
~63% compared to
conventional nitrification Does not consume COD | Additional process to
maintain Heat generated by
Anammox, may need
cooling | #### **Biological Nitrogen Removal** #### SHARON® Process Short-cuts Nitrification to Reduce Energy and Carbon Requirements ### Anammox® Process Achieves Shortest Route to Remove Nitrogen at Low Operating Cost (low oxygen, no carbon) #### **Side Stream Process Flow Schematics** #### Side Stream Process Alternatives - Other | Side Stream Process | Description | |--|--| | AT-3 ("Aeration Tank
3", NYCDEP – 26th
Ward) | Treats Side Stream in a separate activated sludge system, plug flow | | BABE ("Bio-
Augmentation Batch
Enhanced") | Divert portion mainstream RAS and blend with Side Stream to feed into reactor, usually SBR | | CaRRB ("Centrate and RAS Reaeration Basin") | Side Stream (centrate) and RAS in bioreactor with aeration for nitrification before return to mainstream | #### Side Stream Process Alternatives - Other | Side Stream
Process | Description | Advantages | Disadvantages | |--|--|--|---| | AT-3 ("Aeration
Tank 3", NYCDEP –
26th Ward) | Treats Side Stream in a separate activated sludge system, plug flow | • Increased capacity of mainstream nitrification process | Limited full-scale installationsNo denite of Side Stream | | BABE ("Bio-
Augmentation
Batch Enhanced") | Divert portion mainstream RAS and blend with Side Stream to feed into reactor, usually SBR | Settles better than InNitri® because
of RAS addition Can achieve some denite with SBR | Limited full-scale installationsAdditional process to maintain | | CaRRB ("Centrate
and RAS
Reaeration Basin") | Side Stream (centrate) and RAS in bioreactor with aeration for nitrification before return to mainstream | Reduced load to mainstream process Can provide biomass storage for wet weather | Additional process to maintain | | Ostara PEARL TM
Nutrient Recycling | Controlled struvite precipitation for phosphorus & ammonia removal | • Produces struvite, a product that can be sold | P benefit, not much N benefitCostly | #### **Faces of Struvite** #### **Faces of Struvite** #### **Drivers for Harvesting Phosphorus** - Struvite Chemical and Cleaning Costs Increasing - \$170,000/yr and growing at Des Moines - \$750,000/yr and growing at Deer Island (Ferric only) - Potential Effluent Nutrient - Potential Restrictions on Land Applied P at Des Moines #### Phosphorus Side Stream Treatment Options - Non-proprietary - Biological - Chemical - iron salts - Alum - pH adjustment - Carbon Dioxide Injection - Proprietary - Chemical Addition - Struvout 2520 - Harvest - DHV Crystalactor - Paques Phosphaq - CNP Airprex - Multiform Harvest - Ostara PEARLTM ## Proposed Solution Side Stream Nutrient Removal ## Proposed Solution Side Stream Nutrient Removal revitalizing resources from Waste ### $Mg^{2+} + NH_4^{++} + PO_4^{3-} + 6 H_2O \rightarrow MgNH_4PO_4 \cdot 6H_2O$ struvite $3Fe^{2+} + 2 PO_4^{3-} \rightarrow Fe_3(PO_4)_2 8 H_2O$ vivianite CDM Smith #### DHV - Crystalactor #### PHOSPAQ Struvite Product - Reduce Polymer by up to 30% - Reduce Disposal Costs by up to 20% - Reduce Phosphorus Recycle Load by up to 90% - Reduce Maintenance Costs by up to 50% - Increase Revenue up to 10% from Fertilizer #### Multiform Harvest #### Crystal Green® Fertilizer (Photo removed to reduce file size.) #### WASSTRIP_{TM} recommended to protect digester ### Struvite Prevention Electrical Cell Lysis to Aid Struvite Harvesting CDM Smith #### Summary - Compared several nitrogen and phosphorus side stream treatment alternatives - Evaluated several struvite recovery technologies spanning perceived range from low- to high-tech - Proposed further study with non Bio-P plants and implications of Iron Salt addition. #### Questions **Contact Information:** SpargiminoEM@cdmsmith.com